z-logo
Premium
Selection of indicators for assessing and managing the impacts of bottom trawling on seabed habitats
Author(s) -
Hiddink Jan Geert,
Kaiser Michel J.,
Sciberras Marija,
McConnaughey Robert A.,
Mazor Tessa,
Hilborn Ray,
Collie Jeremy S.,
Pitcher C. Roland,
Parma Ana M.,
Suuronen Petri,
Rijnsdorp Adriaan D.,
Jennings Simon
Publication year - 2020
Publication title -
journal of applied ecology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.503
H-Index - 181
eISSN - 1365-2664
pISSN - 0021-8901
DOI - 10.1111/1365-2664.13617
Subject(s) - trawling , species evenness , species richness , bottom trawling , biomass (ecology) , fishery , biota , benthic zone , ecology , habitat , environmental science , geography , fishing , biology
Bottom trawl fisheries are the most widespread source of anthropogenic physical disturbance to seabed habitats. Development of fisheries‐, conservation‐ and ecosystem‐based management strategies requires the selection of indicators of the impact of bottom trawling on the state of benthic biota. Many indicators have been proposed, but no rigorous test of a range of candidate indicators against nine commonly agreed criteria (concreteness, theoretical basis, public awareness, cost, measurement, historical data, sensitivity, responsiveness, specificity) has been performed. Here, we collated data from 41 studies that compared the benthic biota in trawled areas with those in control locations (that were either not trawled or trawled infrequently), examining seven potential indicators (numbers and biomass for individual taxa and whole communities, evenness, Shannon–Wiener diversity and species richness) to assess their performance against the set of nine criteria. The effects of trawling were stronger on whole‐community numbers and biomass than for individual taxa. Species richness was also negatively affected by trawling but other measures of diversity were not. Community numbers and biomass met all criteria, taxa numbers and biomass and species richness satisfied most criteria, but evenness and Shannon–Wiener diversity did not respond to trawling and only met few criteria, and hence are not suitable state indicators of the effect of bottom trawling. Synthesis and applications . An evaluation of each candidate indicator against a commonly agreed suite of desirable properties coupled with the outputs of our meta‐analysis showed that whole‐community numbers of individuals and biomass are the most suitable indicators of bottom trawling impacts as they performed well on all criteria. Strengths of these indicators are that they respond strongly to trawling, relate directly to ecosystem functioning and are straightforward to measure. Evenness and Shannon–Wiener diversity are not responsive to trawling and unsuitable for the monitoring and assessment of bottom trawl impacts.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here