z-logo
Premium
Sex‐specific patterns of senescence in Nazca boobies linked to mating system
Author(s) -
Tompkins Emily M.,
Anderson David J.
Publication year - 2019
Publication title -
journal of animal ecology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.134
H-Index - 157
eISSN - 1365-2656
pISSN - 0021-8790
DOI - 10.1111/1365-2656.12944
Subject(s) - senescence , biology , fledge , demography , reproduction , reproductive success , ageing , population , context (archaeology) , seabird , mating , ecology , genetics , paleontology , sociology , predation
Abstract Under life‐history theories of ageing, increased senescence should follow relatively high reproductive effort. This expectation has rarely been tested against senescence varying between and within the two sexes, although such an approach may clarify the origins of sex‐specific ageing in the context of a given mating system. Nazca boobies ( Sula granti ; a seabird) practise serial monogamy and biparental care. A male‐biased population sex ratio results in earlier and more frequent breeding by females. Based on sex‐specific reproductive schedules, females were expected to show faster age‐related decline for survival and reproduction. Within each sex, high reproductive effort in early life was expected to reduce late‐life performance and accelerate senescence. Longitudinal data were used to (a) evaluate the sex specificity of reproductive and actuarial senescence and then (b) test for early‐/late‐life fitness trade‐offs within each sex. Within‐sex analyses inform an interpretation of sex differences in senescence based on costs of reproduction. Analyses incorporated individual heterogeneity in breeding performance and cohort‐level differences in early‐adult environments. Females showed marginally more intense actuarial senescence and stronger age‐related declines for fledging success. The opposite pattern (earlier and faster male senescence) was found for breeding probability. Individual reproductive effort in early life positively predicted late‐life reproductive performance in both sexes and thus did not support a causal link between early‐reproduction/late‐life fitness trade‐offs and sex differences in ageing. A high‐quality diet in early adulthood reduced late‐life survival (females) and accelerated senescence for fledging success (males). This study documents clear variation in ageing patterns—by sex, early‐adult environment and early‐adult reproductive effort—with implications for the role mating systems and early‐life environments play in determining ageing patterns. Absent evidence for a disposable soma mechanism, patterns of sex differences in senescence may result from age‐ and condition‐dependent mate choice interacting with this population's male‐biased sex ratio and mate rotation.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here