Premium
The interacting effects of diversity and propagule pressure on early colonization and population size
Author(s) -
Hedge Luke H.,
Leung Brian,
O'Connor Wayne A.,
Johnston Emma L.
Publication year - 2014
Publication title -
journal of animal ecology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.134
H-Index - 157
eISSN - 1365-2656
pISSN - 0021-8790
DOI - 10.1111/1365-2656.12125
Subject(s) - propagule , propagule pressure , colonization , intraspecific competition , species richness , biology , genetic diversity , ecology , population , competition (biology) , biological dispersal , demography , sociology
Summary We are now beginning to understand the role of intraspecific diversity on fundamental ecological phenomena. There exists a paucity of knowledge, however, regarding how intraspecific, or genetic diversity, may covary with other important factors such as propagule pressure. A combination of theoretical modelling and experimentation was used to explore the way propagule pressure and genetic richness may interact. We compare colonization rates of the A ustralian bivalve S accostrea glomerata ( G ould 1885). We cross propagule size and genetic richness in a factorial design in order to examine the generalities of our theoretical model. Modelling showed that diversity and propagule pressure should generally interact synergistically when positive feedbacks occur (e.g. aggregation). The strength of genotype effects depended on propagule size, or the numerical abundance of arriving individuals. When propagule size was very small (<4 individuals), however, greater genetic richness unexpectedly reduced colonization. The probability of S . glomerata colonization was 76% in genetically rich, larger propagules, almost 39 percentage points higher than in genetically poor propagules of similar size. This pattern was not observed in less dense, smaller propagules. We predict that density‐dependent interactions between larvae in the water column may explain this pattern.