z-logo
Premium
Semi‐auto horizon tracking guided by strata histograms generated with transdimensional Markov‐chain Monte Carlo
Author(s) -
Cho Yongchae,
Jeong Daein,
Jun Hyunggu
Publication year - 2020
Publication title -
geophysical prospecting
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.735
H-Index - 79
eISSN - 1365-2478
pISSN - 0016-8025
DOI - 10.1111/1365-2478.12933
Subject(s) - histogram , markov chain monte carlo , horizon , computer science , workflow , monte carlo method , geology , algorithm , markov chain , computation , artificial intelligence , machine learning , bayesian probability , mathematics , statistics , database , geometry , image (mathematics)
Although horizon interpretation is a routine task for building reservoir models and accurately estimating hydrocarbon production volumes, it is a labour‐intensive and protracted process. Hence, many scientists have worked to improve the horizon interpretation efficiency via auto‐picking algorithms. Nevertheless, the implementation of a classic auto‐tracking method becomes challenging when addressing reflections with weak and discontinuous signals, which are associated with complicated structures. As an alternative, we propose a workflow consisting of two steps: (1) the computation of strata histograms using transdimensional Markov‐chain Monte Carlo and (2) horizon auto‐tracking using waveform‐based auto‐tracking guided by those strata histograms. These strata histograms generate signals that are vertically sharper and more laterally continuous than original seismic signals; therefore, the proposed workflow supports the propagation of waveform‐based auto‐picking without terminating against complicated geological structures. We demonstrate the performance of the novel horizon auto‐tracking workflow through seismic data acquired from the Gulf of Mexico, and the Markov‐chain Monte Carlo inversion results are validated using log data. The auto‐tracked results show that the proposed method can successfully expand horizon seed points even though the seismic signal continuity is relatively low around salt diapirs and large‐scale faults.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here