Premium
Constructing a discrete fracture network constrained by seismic inversion data
Author(s) -
den Boer Lennert D.,
Sayers Colin M.
Publication year - 2018
Publication title -
geophysical prospecting
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.735
H-Index - 79
eISSN - 1365-2478
pISSN - 0016-8025
DOI - 10.1111/1365-2478.12527
Subject(s) - geology , amplitude versus offset , seismic inversion , anisotropy , azimuth , permeability (electromagnetism) , environmental geology , engineering geology , fracture (geology) , offset (computer science) , seismic to simulation , seismic anisotropy , hydrogeology , fluid dynamics , reservoir modeling , regional geology , amplitude , seismology , geophysics , geotechnical engineering , computer science , mechanics , geometry , mathematics , membrane , mantle (geology) , metamorphic petrology , tectonics , biology , genetics , quantum mechanics , telmatology , programming language , physics , volcanism
Rock fractures are of great practical importance to petroleum reservoir engineering because they provide pathways for fluid flow, especially in reservoirs with low matrix permeability, where they constitute the primary flow conduits. Understanding the spatial distribution of natural fracture networks is thus key to optimising production. The impact of fracture systems on fluid flow patterns can be predicted using discrete fracture network models, which allow not only the 6 independent components of the second‐rank permeability tensor to be estimated, but also the 21 independent components of the fully anisotropic fourth‐rank elastic stiffness tensor, from which the elastic and seismic properties of the fractured rock medium can be predicted. As they are stochastically generated, discrete fracture network realisations are inherently non‐unique. It is thus important to constrain their construction, so as to reduce their range of variability and, hence, the uncertainty of fractured rock properties derived from them. This paper presents the underlying theory and implementation of a method for constructing a geologically realistic discrete fracture network, constrained by seismic amplitude variation with offset and azimuth data. Several different formulations are described, depending on the type of seismic data and prior geologic information available, and the relative strengths and weaknesses of each approach are compared. Potential applications of the method are numerous, including the prediction of fluid flow, elastic and seismic properties of fractured reservoirs, model‐based inversion of seismic amplitude variation with offset and azimuth data, and the optimal placement and orientation of infill wells to maximise production.