Premium
Robust dual‐sensor data sea‐surface ghost attenuation for quality control purposes
Author(s) -
Caprioli Philippe,
Ferber Ralf
Publication year - 2018
Publication title -
geophysical prospecting
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.735
H-Index - 79
eISSN - 1365-2478
pISSN - 0016-8025
DOI - 10.1111/1365-2478.12517
Subject(s) - wavenumber , aliasing , amplitude , attenuation , noise (video) , acoustics , wavelet , filter (signal processing) , algorithm , physics , optics , computer science , artificial intelligence , image (mathematics) , computer vision
Three‐dimensional receiver ghost attenuation (deghosting) of dual‐sensor towed‐streamer data is straightforward, in principle. In its simplest form, it requires applying a three‐dimensional frequency–wavenumber filter to the vertical component of the particle motion data to correct for the amplitude reduction on the vertical component of non‐normal incidence plane waves before combining with the pressure data. More elaborate techniques use three‐dimensional filters to both components before summation, for example, for ghost wavelet dephasing and mitigation of noise of different strengths on the individual components in optimum deghosting. The problem with all these techniques is, of course, that it is usually impossible to transform the data into the crossline wavenumber domain because of aliasing. Hence, usually, a two‐dimensional version of deghosting is applied to the data in the frequency–inline wavenumber domain. We investigate going down the “dimensionality ladder” one more step to a one‐dimensional weighted summation of the records of the collocated sensors to create an approximate deghosting procedure. We specifically consider amplitude‐balancing weights computed via a standard automatic gain control before summation, reminiscent of a diversity stack of the dual‐sensor recordings. This technique is independent of the actual streamer depth and insensitive to variations in the sea‐surface reflection coefficient. The automatic gain control weights serve two purposes: (i) to approximately correct for the geometric amplitude loss of the Z data and (ii) to mitigate noise strength variations on the two components. Here, Z denotes the vertical component of the velocity of particle motion scaled by the seismic impedance of the near‐sensor water volume. The weights are time‐varying and can also be made frequency‐band dependent, adapting better to frequency variations of the noise. The investigated process is a very robust, almost fully hands‐off, approximate three‐dimensional deghosting step for dual‐sensor data, requiring no spatial filtering and no explicit estimates of noise power. We argue that this technique performs well in terms of ghost attenuation (albeit, not exact ghost removal) and balancing the signal‐to‐noise ratio in the output data. For instances where full three‐dimensional receiver deghosting is the final product, the proposed technique is appropriate for efficient quality control of the data acquired and in aiding the parameterisation of the subsequent deghosting processing.