z-logo
Premium
Fast imaging of subsurface conductors using very low‐frequency electromagnetic data
Author(s) -
Singh Anand,
Sharma S.P.
Publication year - 2015
Publication title -
geophysical prospecting
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.735
H-Index - 79
eISSN - 1365-2478
pISSN - 0016-8025
DOI - 10.1111/1365-2478.12323
Subject(s) - electrical conductor , regional geology , geology , environmental geology , economic geology , inversion (geology) , skin effect , geophysics , magnetic field , low frequency , inverse problem , engineering geology , hydrogeology , seismology , physics , mathematics , volcanism , geotechnical engineering , mathematical analysis , metamorphic petrology , quantum mechanics , astronomy , telmatology , tectonics
The study presents a fast imaging technique for the very low‐frequency data interpretation. First, an analytical expression was derived to compute the vertical component of the magnetic field at any point on the Earth's surface for a given current density distribution in a rectangular block on the subsurface. Current density is considered as exponentially decreasing with depth, according to the skin depth rule in a particular block. Subsequently, the vertical component of the magnetic field due to the entire subsurface was computed as the sum of the vertical component of the magnetic field due to an individual block. Since the vertical component of the magnetic field is proportional to the real part of very low‐frequency anomaly, an inversion program was developed for imaging of the subsurface conductors using the real very low‐frequency anomaly in terms of apparent current density distribution in the subsurface. Imaging results from the presented formulation were compared with other imaging techniques in terms of apparent current density and resistivity distribution using a standard numerical forward modelling and inversion technique. Efficacy of the developed approach was demonstrated for the interpretation of synthetic and field very low‐frequency data. The presented imaging technique shows improvement with respect to the filtering approaches in depicting subsurface conductors. Further, results obtained using the presented approach are closer to the results of rigorous resistivity inversion. Since the presented approach uses only the real anomaly, which is not sensitive to very small isolated near‐surface conducting features, it depicts prominent conducting features in the subsurface.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here