Premium
Seismic directional random noise suppression by radial‐trace time–frequency peak filtering using the Hurst exponent statistic
Author(s) -
Zhang Chao,
Li Yue,
Lin Hongbo,
Yang Baojun
Publication year - 2016
Publication title -
geophysical prospecting
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.735
H-Index - 79
eISSN - 1365-2478
pISSN - 0016-8025
DOI - 10.1111/1365-2478.12309
Subject(s) - noise (video) , hurst exponent , gaussian noise , value noise , gradient noise , detrended fluctuation analysis , noise measurement , signal to noise ratio (imaging) , acoustics , mathematics , algorithm , statistics , computer science , noise floor , noise reduction , physics , artificial intelligence , scaling , geometry , image (mathematics)
Radial‐trace time–frequency peak filtering filters a seismic record along the radial‐trace direction rather than the conventional channel direction. It takes the spatial correlation of the reflected events between adjacent channels into account. Thus, radial‐trace time–frequency peak filtering performs well in denoising and enhancing the continuity of reflected events. However, in the seismic record there is often random noise whose energy is concentrated in certain directions; the noise in these directions is correlative. We refer to this kind of random noise (that is distributed randomly in time but correlative in the space) as directional random noise. Under radial‐trace time–frequency peak filtering, the directional random noise will be treated as signal and enhanced when this noise has same direction as the signal. Therefore, we need to identify the directional random noise before the filtering. In this paper, we test the linearity of signal and directional random noise in time using the Hurst exponent. The time series of signals with high linearity lead to large Hurst exponent value; however, directional random noise is a random series in time without a fixed waveform and thus its linearity is low; therefore, we can differentiate the signal and directional random noise by the Hurst exponent values. The directional random noise can then be suppressed by using a long filtering window length during the radial‐trace time–frequency peak filtering. Synthetic and real data examples show that the proposed method can remove most directional random noise and can effectively recover the reflected events.