Premium
Physical constraints on c 13 and δ for transversely isotropic hydrocarbon source rocks
Author(s) -
Yan Fuyong,
Han DeHua,
Yao Qiuliang
Publication year - 2016
Publication title -
geophysical prospecting
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.735
H-Index - 79
eISSN - 1365-2478
pISSN - 0016-8025
DOI - 10.1111/1365-2478.12265
Subject(s) - transverse isotropy , anisotropy , isotropy , oblique case , geology , gemology , igneous petrology , perpendicular , physics , engineering geology , geometry , seismology , optics , mathematics , volcanism , philosophy , linguistics , tectonics
Based on the theory of anisotropic elasticity and observation of static mechanic measurement of transversely isotropic hydrocarbon source rocks or rock‐like materials, we reasoned that one of the three principal Poisson's ratios of transversely isotropic hydrocarbon source rocks should always be greater than the other two and they should be generally positive. From these relations, we derived tight physical constraints on c 13 , Thomsen parameter δ, and anellipticity parameter η. Some of the published data from laboratory velocity anisotropy measurement are lying outside of the constraints. We analysed that they are primarily caused by substantial uncertainty associated with the oblique velocity measurement. These physical constraints will be useful for our understanding of Thomsen parameter δ, data quality checking, and predicting δ from measurements perpendicular and parallel to the symmetrical axis of transversely isotropic medium. The physical constraints should also have potential application in anisotropic seismic data processing.