z-logo
Premium
Laboratory measurements of guided‐wave propagation within a fluid‐saturated fracture
Author(s) -
Nakagawa Seiji,
Nakashima Shinichiro,
Korneev Valeri A.
Publication year - 2016
Publication title -
geophysical prospecting
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.735
H-Index - 79
eISSN - 1365-2478
pISSN - 0016-8025
DOI - 10.1111/1365-2478.12223
Subject(s) - attenuation , poromechanics , fracture (geology) , wave propagation , geology , mechanics , well stimulation , geotechnical engineering , materials science , porous medium , porosity , optics , physics , reservoir engineering , petroleum , paleontology
A fluid‐saturated flat channel between solids, such as a fracture, is known to support guided waves—sometimes called Krauklis waves. At low frequencies, Krauklis waves can have very low velocity and large attenuation and are very dispersive. Because they propagate primarily within the fluid channel formed by a fracture, Krauklis waves can potentially be used for geological fracture characterization in the field. Using an analogue fracture consisting of a pair of flat slender plates with a mediating fluid layer—a trilayer model—we conducted laboratory measurements of the velocity and attenuation of Krauklis waves. Unlike previous experiments using ultrasonic waves, these experiments used frequencies well below 1 kHz, resulting in extremely low velocity and large attenuation of the waves. The mechanical compliance of the fracture was varied by modifying the stiffness of the fluid seal of the physical fracture model, and proppant (fracture‐filling high‐permeability sand) was also introduced into the fracture to examine its impact on wave propagation. A theoretical frequency equation for the trilayer model was derived using the poroelastic linear‐slip interface model, and its solutions were compared to the experimental results.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here