z-logo
Premium
Full waveform inversion and the truncated Newton method: quantitative imaging of complex subsurface structures
Author(s) -
Métivier L.,
Bretaudeau F.,
Brossier R.,
Operto S.,
Virieux J.
Publication year - 2014
Publication title -
geophysical prospecting
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.735
H-Index - 79
eISSN - 1365-2478
pISSN - 0016-8025
DOI - 10.1111/1365-2478.12136
Subject(s) - hessian matrix , conjugate gradient method , inversion (geology) , inverse problem , waveform , newton's method , regional geology , minification , nonlinear system , nonlinear conjugate gradient method , computation , azimuth , algorithm , quasi newton method , geology , computer science , mathematics , gradient descent , mathematical optimization , mathematical analysis , artificial neural network , geometry , physics , seismology , metamorphic petrology , tectonics , telecommunications , quantum mechanics , machine learning , radar
Full waveform inversion is a powerful tool for quantitative seismic imaging from wide‐azimuth seismic data. The method is based on the minimization of the misfit between observed and simulated data. This amounts to the solution of a large‐scale nonlinear minimization problem. The inverse Hessian operator plays a crucial role in this reconstruction process. Accounting accurately for the effect of this operator within the minimization scheme should correct for illumination deficits, restore the amplitude of the subsurface parameters, and help to remove artefacts generated by energetic multiple reflections. Conventional minimization methods (nonlinear conjugate gradient, quasi‐Newton methods) only roughly approximate the effect of this operator. In this study, we are interested in the truncated Newton minimization method. These methods are based on the computation of the model update through a matrix‐free conjugate gradient solution of the Newton linear system. We present a feasible implementation of this method for the full waveform inversion problem, based on a second‐order adjoint state formulation for the computation of Hessian‐vector products. We compare this method with conventional methods within the context of 2D acoustic frequency full waveform inversion for the reconstruction of P‐wave velocity models. Two test cases are investigated. The first is the synthetic BP 2004 model, representative of the Gulf of Mexico geology with high velocity contrasts associated with the presence of salt structures. The second is a 2D real data‐set from the Valhall oil field in North sea. Although, from a computational cost point of view, the truncated Newton method appears to be more expensive than conventional optimization algorithms, the results emphasize its increased robustness. A better reconstruction of the P‐wave velocity model is provided when energetic multiple reflections make it difficult to interpret the seismic data. A better trade‐off between regularization and resolution is obtained when noise contamination of the data requires one to regularize the solution of the inverse problem.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here