Premium
Generalized diffraction‐stack migration and filtering of coherent noise
Author(s) -
Zhan Ge,
Dai Wei,
Zhou Min,
Luo Yi,
Schuster Gerard T.
Publication year - 2014
Publication title -
geophysical prospecting
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.735
H-Index - 79
eISSN - 1365-2478
pISSN - 0016-8025
DOI - 10.1111/1365-2478.12086
Subject(s) - diffraction , seismic migration , stack (abstract data type) , algorithm , hyperbola , reflection (computer programming) , computer science , optics , mathematics , geology , physics , geometry , seismology , programming language
We reformulate the equation of reverse‐time migration so that it can be interpreted as summing data along a series of hyperbola‐like curves, each one representing a different type of event such as a reflection or multiple. This is a generalization of the familiar diffraction‐stack migration algorithm where the migration image at a point is computed by the sum of trace amplitudes along an appropriate hyperbola‐like curve. Instead of summing along the curve associated with the primary reflection, the sum is over all scattering events and so this method is named generalized diffraction‐stack migration. This formulation leads to filters that can be applied to the generalized diffraction‐stack migration operator to mitigate coherent migration artefacts due to, e.g., crosstalk and aliasing. Results with both synthetic and field data show that generalized diffraction‐stack migration images have fewer artefacts than those computed by the standard reverse‐time migration algorithm. The main drawback is that generalized diffraction‐stack migration is much more memory intensive and I/O limited than the standard reverse‐time migration method.