z-logo
Premium
Direct inversion for a fluid factor and its application in heterogeneous reservoirs
Author(s) -
Zong Zhaoyun,
Yin Xingyao,
Wu Guochen
Publication year - 2013
Publication title -
geophysical prospecting
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.735
H-Index - 79
eISSN - 1365-2478
pISSN - 0016-8025
DOI - 10.1111/1365-2478.12038
Subject(s) - geology , shear modulus , bulk modulus , seismic inversion , inversion (geology) , mathematics , physics , geometry , seismology , azimuth , thermodynamics , tectonics
Prestack seismic inversion plays an important role in estimating elastic parameters that are sensitive to reservoirs and fluid underground. In this paper, a simultaneous inversion method named FMR‐AVA (Fluid Factor, Mu (Shear modulus), Rho (Density)‐Amplitude Variation with Angle) is proposed based on partial angle stack seismic gathers. This method can be used for direct inversion for the fluid factor, shear modulus and density of heterogeneous reservoirs. Firstly, an FMR approximation equation of a reflection coefficient is derived based on poroelasticity with P‐ and S‐wave moduli. Secondly, a stable simultaneous AVA inversion approach is presented in a Bayesian scheme. This approach has little dependence on initial models. Furthermore, it can be applied in heterogeneous reservoirs whose initial models for inversion are not easy to establish. Finally, a model test shows the superiority of this FMR‐AVA inversion method in stability and independence of initial models. We obtain a reasonable fluid factor, shear modulus and density even with smooth initial models and moderate Gaussian noise. A real data case example shows that the inverted fluid factor, shear modulus and density fit nicely with well log interpretation results, which verifies the effectiveness of the proposed method.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here