z-logo
Premium
Limited scope for plasticity to increase upper thermal limits
Author(s) -
Heerwaarden Belinda,
Kellermann Vanessa,
Sgrò Carla M.
Publication year - 2016
Publication title -
functional ecology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.272
H-Index - 154
eISSN - 1365-2435
pISSN - 0269-8463
DOI - 10.1111/1365-2435.12687
Subject(s) - biology , phenotypic plasticity , acclimatization , plasticity , developmental plasticity , population , temperate climate , ectotherm , hardening (computing) , ecology , materials science , composite material , demography , sociology , layer (electronics)
Summary Increases in average temperature and the frequency of extreme temperature events are likely to pose a major risk to species already close to their upper physiological thermal limits. The extent to which thermal phenotypic plasticity can buffer these changes and whether plasticity is constrained by basal tolerance levels remains unknown. We examined the effect of developmental temperature under both constant and fluctuating thermal regimes (developmental acclimation), as well as short‐term heat hardening, on upper thermal limits ( CT max) in a tropical and temperate population of Drosophila melanogaster . We found evidence for thermal plasticity in response to both developmental acclimation and hardening treatments; CT max increased at warmer developmental temperatures and with a prior heat hardening treatment. However, hardening and acclimation responses were small, improving CT max by a maximum of 1·01 °C. These results imply that overheating risk will only be minimally reduced by plasticity. We observed significant associations between developmental temperature and both basal CT max and hardening capacity (a measure of the extent of the plastic response). Basal CT max increased, while hardening capacity decreased, with increasing developmental acclimation temperature. This indicates that increases in basal heat resistance at warmer temperatures may come at the cost of a reduced capacity to harden. While plasticity in CT max is evident in both populations of D. melanogaster we studied, plastic increases in upper thermal limits, particularly at warmer temperatures, may not be sufficient to keep pace with temperature increases predicted under climate change. A lay summary is available for this article.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here