z-logo
Premium
Tuberculosis: Smart manipulation of a lethal host
Author(s) -
Chaurasiya Shivendra K.
Publication year - 2018
Publication title -
microbiology and immunology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.664
H-Index - 70
eISSN - 1348-0421
pISSN - 0385-5600
DOI - 10.1111/1348-0421.12593
Subject(s) - tuberculosis , mycobacterium tuberculosis , biology , macrophage , immunology , immune system , pathogen , pathogenesis , microbiology and biotechnology , host (biology) , virology , medicine , pathology , ecology , biochemistry , in vitro
Tuberculosis (TB) caused by Mycobacterium tuberculosis remains a global threat to human health. Development of drug resistance and co‐infection with HIV has increased the morbidity and mortality caused by TB. Macrophages serve as primary defense against microbial infections, including TB. Upon recognition and uptake of mycobacteria, macrophages initiate a series of events designed to lead to generation of effective immune responses and clearance of infection. However, pathogenic mycobacteria utilize multiple mechanisms for manipulating macrophage responses to protect itself from being killed and to survive within these cells that are designed to kill them. The outcomes of mycobacterial infection are determined by several host‐ and pathogen‐related factors. Significant advancements in understanding mycobacterial pathogenesis have been made in recent years. In this review, some of the important factors/mechanisms regulating mycobacterial survival inside macrophages are discussed.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here