z-logo
Premium
Role of sialic acid‐containing glycans of matrix metalloproteinase‐9 (MMP‐9) in the interaction between MMP‐9 and staphylococcal superantigen‐like protein 5
Author(s) -
Kurisaka Chisato,
Oku Teruaki,
Itoh Saotomo,
Tsuji Tsutomu
Publication year - 2018
Publication title -
microbiology and immunology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.664
H-Index - 70
eISSN - 1348-0421
pISSN - 0385-5600
DOI - 10.1111/1348-0421.12573
Subject(s) - sialic acid , biology , neuraminidase , glycan , biochemistry , recombinant dna , matrix metalloproteinase , glycoprotein , microbiology and biotechnology , cell culture , enzyme , gene , genetics
Staphylococcal superantigen‐like proteins (SSL) show no superantigenic activity but have recently been considered to act as immune suppressors. It was previously reported that SSL5 bound to P‐selectin glycoprotein ligand‐1 (PSGL‐1) and matrix metalloproteinase (MMP)‐9, leading to inhibition of leukocyte adhesion and invasion. These interactions were suggested to depend on sialic acid‐containing glycans of MMP‐9, but the roles of sialic acids in the interaction between SSL5 and MMP‐9 are still controversial. In the present study, we prepared recombinant glutathione S ‐transferase‐tagged SSL5 (GST‐SSL5) and analyzed its binding capacity to MMP‐9 by pull‐down assay after various modifications of its carbohydrate moieties. We observed that GST‐SSL5 specifically bound to MMP‐9 from a human monocytic leukemia cell line (THP‐1 cells) and inhibited its enzymatic activity in a concentration‐dependent manner. After MMP‐9 was treated with neuraminidase, its binding activity towards GST‐SSL5 was markedly decreased. Furthermore, recombinant MMP‐9 produced by sialic acid‐deficient Lec2 mutant cells showed much lower affinity for SSL5 than that produced by wild‐type CHO‐K1 cells. Treatment of MMP‐9 with PNGase F to remove N ‐glycan resulted in no significant change in the GST‐SSL5/MMP‐9 interaction. In contrast, the binding of GST‐SSL5 to MMP‐9 secreted from THP‐1 cells cultured in the presence of an inhibitor for the biosynthesis of O ‐glycan (benzyl‐GalNAc) was weaker than the binding of GST‐SSL5 to MMP‐9 secreted from untreated cells. These results strongly suggest the importance of the sialic acid‐containing O ‐glycans of MMP‐9 for the interaction of MMP‐9 with GST‐SSL5.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here