Premium
Evaluation of recombinant adenovirus vaccines based on glycoprotein D and truncated UL25 against herpes simplex virus type 2 in mice
Author(s) -
Liu Wei,
Zhou Yan,
Wang Ziyan,
Zhang Zeqiang,
Wang Qizhi,
Su Weiheng,
Chen Yan,
Zhang Yan,
Gao Feng,
Jiang Chunlai,
Kong Wei
Publication year - 2017
Publication title -
microbiology and immunology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.664
H-Index - 70
eISSN - 1348-0421
pISSN - 0385-5600
DOI - 10.1111/1348-0421.12482
Subject(s) - immunogenicity , herpes simplex virus , virology , recombinant dna , biology , t cell , immunology , virus , antigen , immune system , biochemistry , gene
The high prevalence of herpes simplex virus 2 (HSV‐2) infections in humans necessitates the development of a safe and effective vaccine that will need to induce vigorous T‐cell responses to control viral infection and transmission. We designed rAd‐gD2, rAd‐gD2ΔUL25, and rAd‐ΔUL25 to investigate whether recombinant replication‐defective adenoviruses vaccine could induce specific T‐cell responses and protect mice against intravaginal HSV‐2 challenge compared with FI‐HSV‐2. In the present study, recombinant adenovirus‐based HSV‐2 showed higher reductions in mortality and stronger antigen‐specific T‐cell responses compared with FI‐HSV‐2 and the severity of genital lesions in mice immunized with rAd‐gD2ΔUL25 was significantly decreased by eliciting IFN‐γ‐secreting T‐cell responses compared with rAd‐gD2 and rAd‐ΔUL25 groups. Our results demonstrated the immunogenicity and protective efficacy of recombinant adenovirus vaccines in acute HSV‐2 infection following intravaginal challenge in mice.