Premium
Generate and Repair Machine Translation
Author(s) -
Naruedomkul Kanlaya,
Cercone Nick
Publication year - 2002
Publication title -
computational intelligence
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.353
H-Index - 52
eISSN - 1467-8640
pISSN - 0824-7935
DOI - 10.1111/0824-7935.00190
Subject(s) - synchronous context free grammar , rule based machine translation , computer science , machine translation , example based machine translation , transfer based machine translation , machine translation software usability , natural language processing , phrase , artificial intelligence , translation (biology) , evaluation of machine translation , dynamic and formal equivalence , computer assisted translation , programming language , syntax , biochemistry , chemistry , messenger rna , gene
We propose Generate and Repair Machine Translation (GRMT), a constraint–based approach to machine translation that focuses on accurate translation output. GRMT performs the translation by generating a Translation Candidate (TC), verifying the syntax and semantics of the TC and repairing the TC when required. GRMT comprises three modules: Analysis Lite Machine Translation (ALMT), Translation Candidate Evaluation (TCE) and Repair and Iterate (RI). The key features of GRMT are simplicity, modularity, extendibility, and multilinguality. An English–Thai translation system has been implemented to illustrate the performance of GRMT. The system has been developed and run under SWI–Prolog 3.2.8. The English and Thai grammars have been developed based on Head–Driven Phrase Structure Grammar (HPSG) and implemented on the Attribute Logic Engine (ALE). GRMT was tested to generate the translations for a number of sentences/phrases. Examples are provided throughout the article to illustrate how GRMT performs the translation process.