z-logo
Premium
Solutions for Exterior Orientation in Photogrammetry: A Review
Author(s) -
Grussenmeyer Pierre,
Al Khalil Omar
Publication year - 2002
Publication title -
the photogrammetric record
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.638
H-Index - 51
eISSN - 1477-9730
pISSN - 0031-868X
DOI - 10.1111/0031-868x.00210
Subject(s) - photogrammetry , orientation (vector space) , computer science , computer vision , geology , remote sensing , geography , artificial intelligence , geometry , mathematics
The determination of the attitude, the position and the intrinsic geometric characteristics of the camera is recognised as the fundamental photogrammetric problem. It can be summarised as the determination of camera interior and exterior orientation parameters, as well as the determination of 3D coordinates of object points. The term “exterior orientation”of an image refers to its position and orientation related to an exterior (object space) coordinate system. Several methods can be applied to determine the parameters of the orientation of one, two or more photos. The orientation can be processed in steps (as relative and absolute orientation) but simultaneous methods (such as bundle adjustments) are now available in many software packages. Several methods have also been developed for the orientation of single images. They are based in general on geometric and topological characteristics of imaged objects. This paper presents a survey of classical and modern methods for the determination of the exterior parameters in photogrammetry, some of which are available as software packages (with practical examples) on the Internet. The methods presented are classified in three principal groups. In the first, a selection of approximate methods for applications that do not require great accuracy is presented. Such methods are also used to calculate values required for iterative processes. In the second group, standard point–based methods derived from collinearity, coplanarity or coangularity conditions are briefly reviewed, followed by line–based approaches. The third group represents orientation methods based on constraints and on concepts of projective geometry, which are becoming of increasing interest for photogrammetrists. In the last section, the paper gives a summary of existing strategies for automatic exterior orientation in aerial photogrammetry.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here