z-logo
Premium
Molecular Insights Into Salt Stress Adaptation in Plants
Author(s) -
Tibesigwa Dativa Gosbert,
Zhuang Wenhui,
Matola Sophia Hydarry,
Zhao Haoqin,
Li Wanxin,
Yang Lu,
Ren Jingru,
Liu Qianqian,
Yang Jingli
Publication year - 2025
Publication title -
plant, cell and environment
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.646
H-Index - 200
eISSN - 1365-3040
pISSN - 0140-7791
DOI - 10.1111/pce.15544
ABSTRACT The significant rise in soil salinity has had detrimental effects on global agricultural production, negatively impacting overall plant health and leading to a decline in productivity. As a protective response, plants have developed diverse regulatory mechanisms to counteract these adverse conditions. The mechanisms help mitigate damage caused by both osmotic and ionic stress resulting from high salinity. Given the severe threat this poses to global food security and the well‐being of the world's population, scientists have dedicated decades of research to understanding how to manage salt stress. Numerous mechanisms have been identified and studied to enhance plant salt tolerance and alleviate the damage caused by salt stress. This review examines recent advancements in molecular regulatory mechanisms underlying plant salt, including salt uptake and transport, salt sensing and signalling, hormonal regulation, epigenetic modifications, genetic adaptation, and posttranslational modifications. Although current knowledge has advanced our understanding, critical gaps and controversies remain, such as the stability of epigenetic memory, the trade‐off between stress tolerance and growth, hormonal crosstalk, and novel genes with uncharacterised roles in salt tolerance. To resolve these questions, further research employing techniques like GWAS, transcriptomics, transgenic and genome‐editing technologies, as well as studies on energy allocation and hormonal regulation, is essential. A deeper exploration of these complex, synergistic mechanisms will pave the way for enhancing plant resilience and ensuring adaptation to increasingly challenging environmental conditions.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Empowering knowledge with every search

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom