Premium
Non‐photochemical quenching ( NPQ ) in photoprotection: insights into NPQ levels required to avoid photoinactivation and photoinhibition
Author(s) -
Zuo Guanqiang
Publication year - 2025
Publication title -
new phytologist
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.742
H-Index - 244
eISSN - 1469-8137
pISSN - 0028-646X
DOI - 10.1111/nph.70121
Summary Plant photosynthesis is highly responsive to fluctuations in environmental cues. To achieve optimal photosynthetic performance, plants must accurately regulate light absorption, maintaining a dynamic balance between energy supply and consumption in the field. Understanding the potential damage and imbalances caused by excessive light during photosynthesis necessitates a comprehensive insight into the protective role of non‐photochemical quenching (NPQ). This rapid photoprotective mechanism dissipates excess excitation energy as heat and is ubiquitous throughout the plant kingdom. Previous reviews have primarily focused on the regulation of NPQ amplitude, often overlooking its efficiency in photoprotection. This review outlines the significance, components, and mechanisms of NPQ, presenting fundamental equations that quantitatively describe both NPQ amplitude and its protective functions. I highlight the methodological approaches to quantify the NPQ levels necessary to prevent photoinactivation and photoinhibition, respectively. I conclude by identifying key open questions regarding NPQ and suggesting directions for future research.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom