z-logo
Premium
ChloroP, a neural network‐based method for predicting chloroplast transit peptides and their cleavage sites
Author(s) -
Emanuelsson Olof,
Nielsen Henrik,
Heijne Gunnar Von
Publication year - 1999
Publication title -
protein science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.353
H-Index - 175
eISSN - 1469-896X
pISSN - 0961-8368
DOI - 10.1110/ps.8.5.978
Subject(s) - transit peptide , cleavage (geology) , chloroplast , computational biology , genome , sequence homology , distance matrix , biology , computer science , genetics , peptide sequence , gene , algorithm , paleontology , plastid , fracture (geology)
We present a neural network based method (ChloroP) for identifying chloroplast transit peptides and their cleavage sites. Using cross-validation, 88% of the sequences in our homology reduced training set were correctly classified as transit peptides or nontransit peptides. This performance level is well above that of the publicly available chloroplast localization predictor PSORT. Cleavage sites are predicted using a scoring matrix derived by an automatic motif-finding algorithm. Approximately 60% of the known cleavage sites in our sequence collection were predicted to within +/-2 residues from the cleavage sites given in SWISS-PROT. An analysis of 715 Arabidopsis thaliana sequences from SWISS-PROT suggests that the ChloroP method should be useful for the identification of putative transit peptides in genome-wide sequence data. The ChloroP predictor is available as a web-server at http://www.cbs.dtu.dk/services/ChloroP/.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here