z-logo
Premium
Cell‐free complements in vivo expression of the E. coli membrane proteome
Author(s) -
Savage David F.,
Anderson Corey L.,
RoblesColmenares Yaneth,
Newby Zachary E.,
Stroud Robert M.
Publication year - 2007
Publication title -
protein science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.353
H-Index - 175
eISSN - 1469-896X
pISSN - 0961-8368
DOI - 10.1110/ps.062696307
Subject(s) - in vivo , proteome , membrane protein , biochemistry , biology , cell free protein synthesis , protein biosynthesis , amino acid , escherichia coli , membrane , cell , cell membrane , chemistry , microbiology and biotechnology , gene , genetics
Reconstituted cell‐free (CF) protein expression systems hold the promise of overcoming the traditional barriers associated with in vivo systems. This is particularly true for membrane proteins, which are often cytotoxic and due to the nature of the membrane, difficult to work with. To evaluate the potential of cell‐free expression, we cloned 120 membrane proteins from E. coli and compared their expression profiles in both an E. coli in vivo system and an E. coli ‐derived cell‐free system. Our results indicate CF is a more robust system and we were able to express 63% of the targets in CF, compared to 44% in vivo. To benchmark the quality of CF produced protein, five target membrane proteins were purified and their homogeneity assayed by gel filtration chromatography. Finally, to demonstrate the ease of amino acid labeling with CF, a novel membrane protein was substituted with selenomethionine, purified, and shown to have 100% incorporation of the unnatural amino acid. We conclude that CF is a novel, robust expression system capable of expressing more proteins than an in vivo system and suitable for production of membrane proteins at the milligram level.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here