Premium
Redesigning protein pK a values
Author(s) -
TynanConnolly Barbara Mary,
Nielsen Jens Erik
Publication year - 2007
Publication title -
protein science
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 3.353
H-Index - 175
eISSN - 1469-896X
pISSN - 0961-8368
DOI - 10.1110/ps.062538707
Subject(s) - titratable acid , enzyme , group (periodic table) , constant (computer programming) , chemistry , download , physics , computer science , mathematics , biochemistry , quantum mechanics , world wide web , programming language
The ability to re-engineer enzymatic pH-activity profiles is of importance for industrial applications of enzymes. We theoretically explore the feasibility of re-engineering enzymatic pH-activity profiles by changing active site pK(a) values using point mutations. We calculate the maximum achievable DeltapK(a) values for 141 target titratable groups in seven enzymes by introducing conservative net-charge altering point mutations. We examine the importance of the number of mutations introduced, their distance from the target titratable group, and the characteristics of the target group itself. The results show that multiple mutations at 10A can change pK(a) values up to two units, but that the introduction of a requirement to keep other pK(a) values constant reduces the magnitude of the achievable DeltapK(a). The algorithm presented shows a good correlation with existing experimental data and is available for download and via a web server at http://enzyme.ucd.ie/pKD.