z-logo
Premium
Binding and signaling of surface‐immobilized reagentless fluorescent biosensors derived from periplasmic binding proteins
Author(s) -
de Lorimier Robert M.,
Tian Yaji,
Hellinga Homme W.
Publication year - 2006
Publication title -
protein science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.353
H-Index - 175
eISSN - 1469-896X
pISSN - 0961-8368
DOI - 10.1110/ps.062261606
Subject(s) - chemistry , biotinylation , ligand (biochemistry) , biosensor , receptor–ligand kinetics , periplasmic space , avidin , maltose binding protein , streptavidin , biochemistry , biophysics , maleimide , target protein , biotin , biology , recombinant dna , fusion protein , receptor , escherichia coli , polymer chemistry , gene
Abstract Development of biosensor devices typically requires incorporation of the molecular recognition element into a solid surface for interfacing with a signal detector. One approach is to immobilize the signal transducing protein directly on a solid surface. Here we compare the effects of two direct immobilization methods on ligand binding, kinetics, and signal transduction of reagentless fluorescent biosensors based on engineered periplasmic binding proteins. We used thermostable ribose and glucose binding proteins cloned from Thermoanaerobacter tengcongensis and Thermotoga maritima , respectively. To test the behavior of these proteins in semispecifically oriented layers, we covalently modified lysine residues with biotin or sulfhydryl functions, and attached the conjugates to plastic surfaces derivatized with streptavidin or maleimide, respectively. The immobilized proteins retained ligand binding and signal transduction but with adversely affected affinities and signal amplitudes for the thiolated, but not the biotinylated, proteins. We also immobilized these proteins in a more specifically oriented layer to maleimide‐derivatized plates using a His 2 Cys 2 zinc finger domain fused at either their N or C termini. Proteins immobilized this way either retained, or displayed enhanced, ligand affinity and signal amplitude. In all cases tested ligand binding by immobilized proteins is reversible, as demonstrated by several iterations of ligand loading and elution. The kinetics of ligand exchange with the immobilized proteins are on the order of seconds.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here