z-logo
Premium
A neural‐network based method for prediction of γ‐turns in proteins from multiple sequence alignment
Author(s) -
Kaur Harpreet,
Raghava G.P.S.
Publication year - 2003
Publication title -
protein science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 3.353
H-Index - 175
eISSN - 1469-896X
pISSN - 0961-8368
DOI - 10.1110/ps.0241703
Subject(s) - artificial neural network , sequence (biology) , computer science , protein structure prediction , protein secondary structure , multiple sequence alignment , set (abstract data type) , artificial intelligence , algorithm , pattern recognition (psychology) , protein structure , machine learning , sequence alignment , physics , peptide sequence , biology , biochemistry , nuclear magnetic resonance , gene , programming language , genetics
In the present study, an attempt has been made to develop a method for predicting gamma-turns in proteins. First, we have implemented the commonly used statistical and machine-learning techniques in the field of protein structure prediction, for the prediction of gamma-turns. All the methods have been trained and tested on a set of 320 nonhomologous protein chains by a fivefold cross-validation technique. It has been observed that the performance of all methods is very poor, having a Matthew's Correlation Coefficient (MCC) </= 0.06. Second, predicted secondary structure obtained from PSIPRED is used in gamma-turn prediction. It has been found that machine-learning methods outperform statistical methods and achieve an MCC of 0.11 when secondary structure information is used. The performance of gamma-turn prediction is further improved when multiple sequence alignment is used as the input instead of a single sequence. Based on this study, we have developed a method, GammaPred, for gamma-turn prediction (MCC = 0.17). The GammaPred is a neural-network-based method, which predicts gamma-turns in two steps. In the first step, a sequence-to-structure network is used to predict the gamma-turns from multiple alignment of protein sequence. In the second step, it uses a structure-to-structure network in which input consists of predicted gamma-turns obtained from the first step and predicted secondary structure obtained from PSIPRED.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here