z-logo
open-access-imgOpen Access
Wave Mode Discrimination of Coded Ultrasonic Guided Waves Using Two-Dimensional Compressed Pulse Analysis
Author(s) -
Sergio Malo,
Sina Fateri,
Makis Livadas,
Cristinel Mares,
Tat-Hean Gan
Publication year - 2017
Publication title -
ieee transactions on ultrasonics, ferroelectrics, and frequency control
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.159
H-Index - 136
eISSN - 1525-8955
pISSN - 0885-3010
DOI - 10.1109/tuffc.2017.2693319
Subject(s) - fields, waves and electromagnetics
Ultrasonic guided waves testing is a technique successfully used in many industrial scenarios worldwide. For many complex applications, the dispersive nature and multimode behavior of the technique still poses a challenge for correct defect detection capabilities. In order to improve the performance of the guided waves, a 2-D compressed pulse analysis is presented in this paper. This novel technique combines the use of pulse compression and dispersion compensation in order to improve the signal-to-noise ratio (SNR) and temporal-spatial resolution of the signals. The ability of the technique to discriminate different wave modes is also highlighted. In addition, an iterative algorithm is developed to identify the wave modes of interest using adaptive peak detection to enable automatic wave mode discrimination. The employed algorithm is developed in order to pave the way for further in situ applications. The performance of Barker-coded and chirp waveforms is studied in a multimodal scenario where longitudinal and flexural wave packets are superposed. The technique is tested in both synthetic and experimental conditions. The enhancements in SNR and temporal resolution are quantified as well as their ability to accurately calculate the propagation distance for different wave modes.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here