z-logo
open-access-imgOpen Access
Fast Orthogonal Row–Column Electronic Scanning With Top-Orthogonal-to-Bottom Electrode Arrays
Author(s) -
Chris Ceroici,
Tyler Harrison,
Roger J. Zemp
Publication year - 2017
Publication title -
ieee transactions on ultrasonics, ferroelectrics, and frequency control
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.159
H-Index - 136
eISSN - 1525-8955
pISSN - 0885-3010
DOI - 10.1109/tuffc.2017.2686781
Subject(s) - fields, waves and electromagnetics
Recently, top-orthogonal-to-bottom electrode 2-D arrays were introduced as a practical design for 3-D ultrasound imaging without requiring the wiring of a 2-D grid of elements. However, previously proposed imaging schemes suffered from speed or image-quality limitations. Here, we propose a new imaging scheme which we call Fast Orthogonal Row-Column Electronic Scanning (FORCES). This new approach takes advantage of bias sensitivity to enable high-quality and fast B-scan imaging. We compare this imaging scheme with an equivalent linear array, a previously proposed row-column imaging scheme, as well as with the Explososcan imaging scheme for 2-D arrays through simulations. In a point phantom simulation, the lateral (azimuthal) resolution of a 64 × 64 element 6.67-MHz λ/2-pitch array using the FORCES imaging scheme with an f-number of 1.7 was 0.52 mm with similar in-plane image quality to an equivalent linear array but with improved and electronically steerable elevational resolution. When compared with other 3-D imaging schemes in point phantom simulations, the FORCES imaging scheme showed an azimuthal resolution improvement of 54% compared with Explososcan. Compared with a previously introduced row-column method, the FORCES imaging scheme had similar resolution but a 25-dB decrease in sidelobe amplitude, significantly impacting contrast to noise in scattering phantoms.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here