
Electron-Beam Dynamics for an Advanced Flash-Radiography Accelerator
Author(s) -
Carl Ekdahl
Publication year - 2015
Publication title -
ieee transactions on plasma science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.46
H-Index - 106
eISSN - 1939-9375
pISSN - 0093-3813
DOI - 10.1109/tps.2015.2496499
Subject(s) - engineered materials, dielectrics and plasmas , fields, waves and electromagnetics
Beam dynamics issues were assessed for a new linear induction electron accelerator being designed for multipulse flash radiography of large explosively driven hydrodynamic experiments. Special attention was paid to equilibrium beam transport, possible emittance growth, and beam stability. Especially problematic would be high-frequency beam instabilities that could blur individual radiographic source spots, low-frequency beam motion that could cause pulse-to-pulse spot displacement, and emittance growth that could enlarge the source spots. Beam physics issues were examined through theoretical analysis and computer simulations, including particle-in-cell codes. Beam instabilities investigated included beam breakup, image displacement, diocotron, parametric envelope, ion hose, and the resistive wall instability. Beam corkscrew motion and emittance growth from beam mismatch were also studied. It was concluded that a beam with radiographic quality equivalent to the present accelerators at Los Alamos National Laboratory will result if the same engineering standards and construction details are upheld.