z-logo
open-access-imgOpen Access
Methodology for Wide Band-Gap Device Dynamic Characterization
Author(s) -
Zheyu Zhang,
Ben Guo,
Fei Fred Wang,
Edward A. Jones,
Leon M. Tolbert,
Benjamin J. Blalock
Publication year - 2017
Publication title -
ieee transactions on power electronics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.159
H-Index - 266
eISSN - 1941-0107
pISSN - 0885-8993
DOI - 10.1109/tpel.2017.2655491
Subject(s) - power, energy and industry applications , aerospace , communication, networking and broadcast technologies , components, circuits, devices and systems , computing and processing , engineered materials, dielectrics and plasmas , fields, waves and electromagnetics , general topics for engineers , nuclear engineering , signal processing and analysis , transportation
The double pulse test (DPT) is a widely accepted method to evaluate the dynamic behavior of power devices. Considering the high switching-speed capability of wide band-gap devices, the test results are very sensitive to the alignment of voltage and current (V–I) measurements. Also, because of the shoot-through current induced by C dv/dt (i.e., cross-talk), the switching losses of the nonoperating switch device in a phase-leg must be considered in addition to the operating device. This paper summarizes the key issues of the DPT, including components and layout design, measurement considerations, grounding effects, and data processing. Additionally, a practical method is proposed for phase-leg switching loss evaluation by calculating the difference between the input energy supplied by a dc capacitor and the output energy stored in a load inductor. Based on a phase-leg power module built with 1200-V/50-A SiC MOSFETs, the test results show that this method can accurately evaluate the switching loss of both the upper and lower switches by detecting only one switching current and voltage, and it is immune to V–I timing misalignment errors.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here