z-logo
open-access-imgOpen Access
Full-Process Operation, Control, and Experiments of Modular High-Frequency-Link DC Transformer Based on Dual Active Bridge for Flexible MVDC Distribution: A Practical Tutorial
Author(s) -
Biao Zhao,
Qiang Song,
Jianguo Li,
Qianhao Sun,
Wenhua Liu
Publication year - 2017
Publication title -
ieee transactions on power electronics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.159
H-Index - 266
eISSN - 1941-0107
pISSN - 0885-8993
DOI - 10.1109/tpel.2016.2626262
Subject(s) - power, energy and industry applications , aerospace , communication, networking and broadcast technologies , components, circuits, devices and systems , computing and processing , engineered materials, dielectrics and plasmas , fields, waves and electromagnetics , general topics for engineers , nuclear engineering , signal processing and analysis , transportation
DC transformer (DCT) will be the key device for medium-voltage dc (MVDC) power distribution system. This paper gives a practical tutorial on full-process operation, control, and experiments for application of DCT based on dual active bridge in flexible MVDC distribution system. The operation of DCT for MVDC distribution is designed to three modes: MVDC, low-voltage dc (LVDC), and power control modes. Three optimal modulation methods during startup, steady, and transient processes are proposed which can reduce current impact in practice. A full-process control strategy during operation state is proposed to achieve flexible control and fast management of voltage and power in MVDC distribution system, especially an optimal balance control during block process is proposed to reduce power losses. On this basis, a fault-handling solution is proposed to improve reliability of DCT in practice, and a hardware design method is proposed to enhance flexibility and modularity. Finally, an industrial prototype is built, and comprehensive experiments verify the validity and effectiveness of the proposed solution. The practical application of DCT in MVDC distribution are expected, and the exploration of this study could provide valuable references for the practical DCT design.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here