
Modular Multilevel High-Frequency-Link DC Transformer Based on Dual Active Phase-Shift Principle for Medium-Voltage DC Power Distribution Application
Author(s) -
Biao Zhao,
Qiang Song,
Jianguo Li,
Yu Wang,
Wenhua Liu
Publication year - 2016
Publication title -
ieee transactions on power electronics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.159
H-Index - 266
eISSN - 1941-0107
pISSN - 0885-8993
DOI - 10.1109/tpel.2016.2558660
Subject(s) - power, energy and industry applications , aerospace , communication, networking and broadcast technologies , components, circuits, devices and systems , computing and processing , engineered materials, dielectrics and plasmas , fields, waves and electromagnetics , general topics for engineers , nuclear engineering , signal processing and analysis , transportation
This paper proposes a multilevel high-frequency-link dc transformer (MDCT) based on dual active phase-shift principle for medium-voltage dc (MVDC) power distribution application. The proposed MDCT employs multilevel and multiplex conversion principle, which brings many advantages and makes the operation of MDCT quite different with the traditional dc transformer (TDCT) and modular multilevel converter. Compared to the TDCT scheme, the proposed MDCT has smaller circulating current and higher power factor; it can operate as a dc breaker to cutoff the connection with the MVDC distribution grid absolutely when a short fault occurs in the distribution grid; the redundant design can be achieved when some submodules failure to improve the reliability. In the paper, the topology, operation principle, modulation method, switching characterization, voltage, and power characterization, and control strategy of MDCT are presented and analyzed comprehensively. At last, a MDCT prototype is built and the experimental results verify the correctness and effectively of the proposed solution.