
Evaluation of Synergy-Based Hand Gesture Recognition Method Against Force Variation for Robust Myoelectric Control
Author(s) -
Zhicheng Teng,
Guanghua Xu,
Renghao Liang,
Min Li,
Sicong Zhang
Publication year - 2021
Publication title -
ieee transactions on neural systems and rehabilitation engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.093
H-Index - 140
eISSN - 1558-0210
pISSN - 1534-4320
DOI - 10.1109/tnsre.2021.3124744
Subject(s) - bioengineering , computing and processing , robotics and control systems , signal processing and analysis , communication, networking and broadcast technologies
The non-stationary characteristics of surface electromyography (sEMG) and possible adverse variations in real-world conditions make it still an open challenge to realize robust myoelectric control (MEC) for multifunctional prostheses. Variable muscle contraction level is one of the handicaps that may degrade the performance of MEC. In this study, we proposed a force-invariant intent recognition method based on muscle synergy analysis (MSA) in the setting of three self-defined force levels (low, medium, and high). Specifically, a fast matrix factorization algorithm based on alternating non-negativity constrained least squares (NMF/ANLS) was chosen to extract task-specific synergies associated with each of six hand gestures in the training stage; while for the testing samples, we used the non-negative least square (NNLS) method to estimate neural commands for movement classification. The performance of proposed method was compared with conventional pattern recognition (PR) method consisting of LDA (linear discrimination analysis) classifier and representative features in three offline evaluation scenarios. Statistical tests on ten able-bodied subjects revealed no significant difference in intra-force-level (p = 0.353) and multi-force-level (p = 0.695) accuracy; But the synergy-based method performed significantly better than conventional PR-based method under inter-force-level conditions (p < 0.05). Similar results were observed for nine amputee subjects though there was a drop in the classification accuracy. This study was the first to concurrently demonstrate the robustness and predictive power of task-specific synergies under variant force levels and explore their potential for reliable intent recognition against force variation. Although the online performance is yet to be demonstrated, the proposed method is characterized by simple training procedure and acceptable computational efficiency, which would potentially provide an alternative approach for the development of clinically viable prostheses and rehabilitation robots driven by sEMG.