z-logo
open-access-imgOpen Access
Real-Time Bladder Pressure Estimation for Closed-Loop Control in a Detrusor Overactivity Model
Author(s) -
Zhonghua Ouyang,
Zachariah Sperry,
Nikolas D. Barrera,
Tim M. Bruns
Publication year - 2019
Publication title -
ieee transactions on neural systems and rehabilitation engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.093
H-Index - 140
eISSN - 1558-0210
pISSN - 1534-4320
DOI - 10.1109/tnsre.2019.2912374
Subject(s) - overactive bladder , neuromodulation , neurostimulation , urination , medicine , stimulation , urology , computer science , urinary system , alternative medicine , pathology
Overactive bladder (OAB) patients suffer from a frequent urge to urinate, which can lead to a poor quality of life. Current neurostimulation therapy uses open-loop electrical stimulation to alleviate symptoms. Continuous stimulation facilitates habituation of neural pathways and consumes battery power. Sensory feedback-based closed-loop stimulation may offer greater clinical benefit by driving bladder relaxation only when bladder contractions are detected, leading to increased bladder capacity. Effective delivery of such sensory feedback, particularly in real-time, is necessary to accomplish this goal. We implemented a Kalman filter-based model to estimate bladder pressure in real-time using unsorted neural recordings from sacral-level dorsal root ganglia, achieving a 0.88 ± 0.16 correlation coefficient fit across 35 normal and simulated OAB bladder fills in five experiments. We also demonstrated closed-loop neuromodulation using the estimated pressure to trigger pudendal nerve stimulation, which increased bladder capacity by 40% in two trials. An offline analysis indicated that unsorted neural signals had a similar stability over time as compared to sorted single units, which would require a higher computational load. We believe this paper demonstrates the utility of decoding bladder pressure from neural activity for closed-loop control; however, real-time validation during behavioral studies is necessary prior to clinical translation.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here