z-logo
open-access-imgOpen Access
$1/f$ Noise and Defects in Microelectronic Materials and Devices
Author(s) -
D. M. Fleetwood
Publication year - 2015
Publication title -
ieee transactions on nuclear science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.537
H-Index - 122
eISSN - 1558-1578
pISSN - 0018-9499
DOI - 10.1109/tns.2015.2405852
Subject(s) - nuclear engineering , bioengineering
This paper reviews and compares predictions of the Dutta-Horn model of low-frequency excess (1/ f) noise with experimental results for thin metal films, MOS transistors, and GaN/AlGaN high-electron mobility transistors (HEMTs). For metal films, mobility fluctuations associated with carrier-defect scattering lead to 1/f noise. In contrast, for most semiconductor devices, the noise usually results from fluctuations in the number of carriers due to charge exchange between the channel and defects, usually at or near a critical semiconductor/insulator interface. The Dutta-Horn model describes the noise with high precision in most cases. Insight into the physical mechanisms that lead to noise in microelectronic materials and devices has been obtained via total-ionizing-dose irradiation and/or thermal annealing, as illustrated with several examples. With the assistance of the Dutta-Horn model, measurements of the noise magnitude and temperature and/or voltage dependence of the noise enable estimates of the energy distributions of defects that lead to 1/f noise. The microstructure of several defects and/or impurities that cause noise in MOS devices (primarily O vacancies) and GaN/AlGaN HEMTs (e.g., hydrogenated impurity centers, N vacancies, and/or Fe centers) have been identified via experiments and density functional theory calculations.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here