z-logo
open-access-imgOpen Access
Interferometer Scanning Microwave Microscopy: Performance Evaluation
Author(s) -
Silviu-Sorin Tuca,
Manuel Kasper,
Ferry Kienberger,
Georg Gramse
Publication year - 2017
Publication title -
ieee transactions on nanotechnology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.574
H-Index - 82
eISSN - 1941-0085
pISSN - 1536-125X
DOI - 10.1109/tnano.2017.2725383
Subject(s) - components, circuits, devices and systems , computing and processing
A systematic and quantitative comparison of electrical detection systems in scanning microwave microscopy is reported. Scanning microwave microscopy (SMM) is capable of investigating nanoscale electrical properties with high accuracy over a broad frequency range of 1-20 GHz. However, due to the passive matching network only discrete frequencies can be used every 1 GHz with varying signal-to-noise ratio (SNR). Here we study in detail the impedance matching mechanism using an interferometric network where a two-port measurement is implemented with a reduction of the trace noise due to signal subtraction. The interferometer setup shows superior performance resulting in a 2-8 fold increased SNR with respect to the standard shunt solution, in addition to stable broadband performance over the full frequency range. We perform a comparison of the electrical sensitivity obtained using a direct connection from the network analyser to probe, the typically implemented shunt-resonator impedance matching network, and the proposed interferometer setup. The interferometer SMM allows us also for calibrated impedance measurements, which we demonstrate on Tobacco mosaic viruses with 18-nm diameter, with a capacitance resolution of 0.67 attoFarads at 10 ms acquisition time per pixel.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here