z-logo
open-access-imgOpen Access
System Design of a 2.75-mW Discrete-Time Superheterodyne Receiver for Bluetooth Low Energy
Author(s) -
Sandro Binsfeld Ferreira,
Feng-Wei Kuo,
Masoud Babaie,
Sergio Bampi,
Robert Bogdan Staszewski
Publication year - 2017
Publication title -
ieee transactions on microwave theory and techniques
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.372
H-Index - 190
eISSN - 1557-9670
pISSN - 0018-9480
DOI - 10.1109/tmtt.2017.2668407
Subject(s) - fields, waves and electromagnetics
This paper introduces a system-level approach to develop the first-ever fully discrete-time (DT) superheterodyne receiver (RX) for Internet-of-Things applications, such as Bluetooth low energy (BLE). It exploits fast switching speed and low internal capacitances of deep-nanoscale CMOS devices to realize a high intermediate-frequency (IF) architecture based on switched-capacitor-based charge-domain bandpass filtering. Power consumption is minimized by aggressively reducing the size of MOS devices and judiciously applying a sampling-rate decimation. The resultant increase in the flicker noise is mitigated by placing the IF frequency beyond the flicker corner frequency. Likewise, the decimation-induced aliasing is mitigated by DT filtering of preceding stages. The BLE RX is fully standard-compliant and achieves a record-low-power consumption of 2.75 mW (including its local oscillator) while delivering the state-of-the-art performance: 6.5-dB noise figure and -19-dBm third-order input intercept point, with a direct antenna connection and thus without the typical external bandpass filters.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here