z-logo
open-access-imgOpen Access
MAVEN: An Algorithm for Multi-Parametric Automated Segmentation of Brain Veins From Gradient Echo Acquisitions
Author(s) -
Serena Monti,
Sirio Cocozza,
Pasquale Borrelli,
Sina Straub,
Mark E. Ladd,
Marco Salvatore,
Enrico Tedeschi,
Giuseppe Palma
Publication year - 2017
Publication title -
ieee transactions on medical imaging
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.322
H-Index - 224
eISSN - 1558-254X
pISSN - 0278-0062
DOI - 10.1109/tmi.2016.2645286
Subject(s) - bioengineering , computing and processing
Cerebral vein analysis provides a chance to study, from an unusual viewpoint, an entire class of brain diseases, including neurodegenerative disorders and traumatic brain injuries. Manual segmentation approaches can be used to assess vascular anatomy, but they are observer-dependent and time-consuming; therefore, automated approaches are desirable, as they also improve reproducibility. In this paper, a new, fully automated algorithm, based on structural, morphological, and relaxometric information, is proposed to segment the entire cerebral venous system from MR images. The algorithm for multi-parametric automated segmentation of brain VEiNs (MAVEN) is based on a combined investigation of multi-parametric information that allows for rejection of false positives and detection of thin vessels. The method is tested on gradient echo brain data sets acquired at 1.5, 3, and 7 T. It is compared to previous methods against manual segmentation, and its inter-scan reproducibility is assessed. The achieved accuracy and reproducibility are good, meaning that MAVEN outperforms previous methods on both quantitative and qualitative analyses. It is usable at all the field strengths explored, showing comparable accuracy scores, with no need for algorithm parameter adjustments, and thus, it is a promising candidate for the characterization of the venous tree topology.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom