z-logo
open-access-imgOpen Access
Enhanced Deployment Algorithms for Heterogeneous Directional Mobile Sensors in a Bounded Monitoring Area
Author(s) -
Ting-Yu Lin,
Hendro Agus Santoso,
Kun-Ru Wu,
Gui-Liu Wang
Publication year - 2017
Publication title -
ieee transactions on mobile computing
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.276
H-Index - 140
eISSN - 1558-0660
pISSN - 1536-1233
DOI - 10.1109/tmc.2016.2563435
Subject(s) - computing and processing , communication, networking and broadcast technologies , signal processing and analysis
Good deployment of sensors empowers the network with effective monitoring ability. Different from omnidirectional sensors, the coverage region of a directional sensor is determined by not only the sensing radius (distance), but also its sensing orientation and spread angle. Heterogeneous sensing distances and spread angles are likely to exist among directional sensors, to which we refer as heterogeneous directional sensors. In this paper, we target on a bounded monitoring area and deal with heterogeneous directional sensors equipped with locomotion and rotation facilities to enable the sensors self-deployment. Two Enhanced Deployment Algorithms, EDA-I and EDA-II, are proposed to achieve high sensing coverage ratio in the monitored field. EDA-I leverages the concept of virtual forces (for sensors movements) and virtual boundary torques (for sensors rotations), whereas EDA-II combines Voronoi diagram directed movements and boundary torques guided rotations. EDA-I computations can be centralized or distributed that differ in required energy and execution time, whereas EDA-II only allows centralized calculations. Our EDA-II outperforms EDA-I in centralized operations, while EDA-I can be adapted into a distributed deployment algorithm without requiring global information and still achieves comparably good coverage performance to its centralized version. To the best of our knowledge, this is perhaps the first work to employ movements followed by rotations for sensors self-deployment. Performance results demonstrate that our enhanced deployment mechanisms are capable of providing desirable surveillance level, while consuming moderate moving and rotating energy under reasonable execution time.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom