Image Denoising With Edge-Preserving and Segmentation Based on Mask NHA
Author(s) -
Fumitaka Hosotani,
Yuya Inuzuka,
Masaya Hasegawa,
Shigeki Hirobayashi,
Tadanobu Misawa
Publication year - 2015
Publication title -
ieee transactions on image processing
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.778
H-Index - 288
eISSN - 1941-0042
pISSN - 1057-7149
DOI - 10.1109/tip.2015.2494461
Subject(s) - signal processing and analysis , communication, networking and broadcast technologies , computing and processing
In this paper, we propose a zero-mean white Gaussian noise removal method using a high-resolution frequency analysis. It is difficult to separate an original image component from a noise component when using discrete Fourier transform or discrete cosine transform for analysis because sidelobes occur in the results. The 2D non-harmonic analysis (2D NHA) is a high-resolution frequency analysis technique that improves noise removal accuracy because of its sidelobe reduction feature. However, spectra generated by NHA are distorted, because of which the signal of the image is non-stationary. In this paper, we analyze each region with a homogeneous texture in the noisy image. Non-uniform regions that occur due to segmentation are analyzed by an extended 2D NHA method called Mask NHA. We conducted an experiment using a simulation image, and found that Mask NHA denoising attains a higher peak signal-to-noise ratio (PSNR) value than the state-of-the-art methods if a suitable segmentation result can be obtained from the input image, even though parameter optimization was incomplete. This experimental result exhibits the upper limit on the value of PSNR in our Mask NHA denoising method. The performance of Mask NHA denoising is expected to approach the limit of PSNR by improving the segmentation method.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom