z-logo
open-access-imgOpen Access
Lookup: Robust and Accurate Indoor Localization Using Visible Light Communication
Author(s) -
Gyula Simon,
Gergely Zachar,
Gergely Vakulya
Publication year - 2017
Publication title -
ieee transactions on instrumentation and measurement
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.82
H-Index - 119
eISSN - 1557-9662
pISSN - 0018-9456
DOI - 10.1109/tim.2017.2707878
Subject(s) - power, energy and industry applications , components, circuits, devices and systems
A novel indoor localization system is presented, where LED beacons are utilized to determine the position of the target sensor, including a camera, an inclinometer, and a magnetometer. The beacons, which can be a part of the existing lighting infrastructure, transmit their identifiers for long distances using visible light communication techniques. The sensor is able to sense and detect the high-frequency (flicker free) code by properly undersampling the transmitted signal. The localization is performed using novel geometric and consensus-based techniques, which tolerate well measurement inaccuracies and sporadic outliers. The performance of the system is analyzed using simulations and real measurements. According to large-scale tests in realistic environments, the accuracy of the proposed system is in the low decimeter range.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom