
Cyber-Physical Testbed Co-Simulation Real-Time: Normal and Abnormal System Frequency Response
Author(s) -
Jose Miguel Riquelme-Dominguez,
Francisco Gonzalez-Longatt,
Andre Felipe Silva Melo,
Jose Luis Rueda,
Peter Palensky
Publication year - 2023
Publication title -
ieee transactions on industry applications
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.19
H-Index - 195
eISSN - 1939-9367
pISSN - 0093-9994
DOI - 10.1109/tia.2023.3342764
Subject(s) - power, energy and industry applications , signal processing and analysis , fields, waves and electromagnetics , components, circuits, devices and systems
Future carbon-neutral power systems impose many challenges; one is the urgent need for a simulation platform that allows replicating the complex systems' actual dynamic performance. This paper shows the results of implementing a cyber-physical testbed co-simulation in real-time to analyse the system frequency response considering primary frequency control and emergency frequency control: under-frequency load-shedding (UFLS) protection schemes. The proposed testbed uses a physical layer of two real-time simulators from different vendors in a closed loop, Opal-RT OP4510 and Typhoon HIL 604, being the first simulator for test system modelling and the remainder used to implement the UFLS protection scheme. Two connections of the real-time simulators are considered: physical connection using wires to exchange analogue signals and cybernetic digital communication using ANSI C37.118 communication protocol. The cybernetic layer of the testbed models a test system, controls the real-time simulation, and implements digital communication between the simulators. A modified version of the P.M. Anderson 9-bus systems is used for testing purposes, including phasor measurement units (PMUs). Results of the real-time simulation show the appropriate performance of the proposed testbed.