z-logo
open-access-imgOpen Access
Robust Fusion of c-VEP and Gaze
Author(s) -
Berkan Kadıoğlu,
İlkay Yıldız,
Pau Closas,
Melanie Fried-Oken,
Deni̇z Erdoğmuş
Publication year - 2019
Publication title -
ieee sensors letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.382
H-Index - 10
ISSN - 2475-1472
DOI - 10.1109/lsens.2018.2878705
Subject(s) - gaze , fusion , computer science , artificial intelligence , psychology , computer vision , optometry , medicine , philosophy , linguistics
Brain computer interfaces (BCIs) are one of the developing technologies, serving as a communication interface for people with neuromuscular disorders. Electroencephalography (EEG) and gaze signals are among the commonly used inputs for the user intent classification problem arising in BCIs. Fusing different types of input modalities, i.e. EEG and gaze, is an obvious but effective solution for achieving high performance on this problem. Even though there are some simplistic approaches for fusing these two evidences, a more effective method is required for classification performances and speeds suitable for real-life scenarios. One of the main problems that is left unrecognized is highly noisy real-life data. In the context of the BCI framework utilized in this work, noisy data stem from user error in the form of tracking a nontarget stimuli, which in turn results in misleading EEG and gaze signals. We propose a method for fusing aforementioned evidences in a probabilistic manner that is highly robust against noisy data. We show the performance of the proposed method on real EEG and gaze data for different configurations of noise control variables. Compared to the regular fusion method, robust method achieves up to 15% higher classification accuracy.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here