z-logo
open-access-imgOpen Access
An Adaptive Seismocardiography (SCG)-ECG Multimodal Framework for Cardiac Gating Using Artificial Neural Networks
Author(s) -
Jingting Yao,
S. Tridandapani,
W. F. Auffermann,
C. A. Wick,
P. T. Bhatti
Publication year - 2018
Publication title -
ieee journal of translational engineering in health and medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.653
H-Index - 24
ISSN - 2168-2372
DOI - 10.1109/jtehm.2018.2869141
Subject(s) - bioengineering , communication, networking and broadcast technologies , components, circuits, devices and systems , computing and processing , signal processing and analysis , robotics and control systems , general topics for engineers
To more accurately trigger data acquisition and reduce radiation exposure of coronary computed tomography angiography (CCTA), a multimodal framework utilizing both electrocardiography (ECG) and seismocardiography (SCG) for CCTA prospective gating is presented. Relying upon a three-layer artificial neural network that adaptively fuses individual ECGand SCG-based quiescence predictions on a beat-by-beat basis, this framework yields a personalized quiescence prediction for each cardiac cycle. This framework was tested on seven healthy subjects (age: 22-48; m/f: 4/3) and eleven cardiac patients (age: 31-78; m/f: 6/5). Seventeen out of 18 benefited from the fusion-based prediction as compared to the ECG-only-based prediction, the traditional prospective gating method. Only one patient whose SCG was compromised by noise was more suitable for ECG-only-based prediction. On average, our fused ECGSCG-based method improves cardiac quiescence prediction by 47% over ECG-only-based method; with both compared against the gold standard, B-mode echocardiography. Fusion-based prediction is also more resistant to heart rate variability than ECG-onlyor SCG-only-based prediction. To assess the clinical value, the diagnostic quality of the CCTA reconstructed volumes from the quiescence derived from ECG-, SCGand fusion-based predictions were graded by a board-certified radiologist using a Likert response format. Grading results indicated the fusion-based prediction improved diagnostic quality. ECG may be a sub-optimal modality for quiescence prediction and can be enhanced by the multimodal framework. The combination of ECG and SCG signals for quiescence prediction bears promise for a more personalized and reliable approach than ECG-only-based method to predict cardiac quiescence for prospective CCTA gating.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here