z-logo
open-access-imgOpen Access
Integrated Semiconductor Laser Optical Phase Lock Loops
Author(s) -
Katarzyna Balakier,
Lalitha Ponnampalam,
Martyn J. Fice,
Cyril C. Renaud,
Alwyn J. Seeds
Publication year - 2017
Publication title -
ieee journal of selected topics in quantum electronics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.131
H-Index - 159
eISSN - 1558-4542
pISSN - 1077-260X
DOI - 10.1109/jstqe.2017.2711581
Subject(s) - engineered materials, dielectrics and plasmas , photonics and electrooptics
An Optical Phase Lock Loop (OPLL) is a feedback control system that allows the phase stabilization of a laser to a reference laser with absolute but adjustable frequency offset. Such phase and frequency locked optical oscillators are of great interest for sensing, spectroscopy, and optical communication applications, where coherent detection offers advantages of higher sensitivity and spectral efficiency than can be achieved with direct detection. As explained in this paper, the fundamental difficulty in realising an OPLL is related to the limitations on loop bandwidth and propagation delay as a function of laser linewidth. In particular, the relatively wide linewidth of semiconductor lasers requires short delay, which can only be achieved through shortening of the feedback path, which is greatly facilitated through photonic integration. This paper reviews the advances in the development of semiconductor laser-based OPLLs and describes how improvements in performance have been enabled by improvements in photonic integration technology. We also describe the first OPLL created using foundry fabricated photonic integrated circuits and off-the-shelf electronic components. Stable locking has been achieved for offset frequencies between 4 and 12 GHz with a heterodyne phase noise below -100 dBc/Hz at 10 kHz offset. This is the highest performance yet reported for a monolithically integrated OPLL and demonstrates the attractiveness of the foundry fabrication approach.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here