
From Photonic Crystal to Subwavelength Micropillar Array Terahertz Lasers
Author(s) -
Michael Krall,
Martin Brandstetter,
Christoph Deutsch,
Hermann Detz,
Aaron Maxwell Andrews,
Werner Schrenk,
Gottfried Strasser,
Karl Unterrainer
Publication year - 2015
Publication title -
ieee journal of selected topics in quantum electronics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.131
H-Index - 159
eISSN - 1558-4542
pISSN - 1077-260X
DOI - 10.1109/jstqe.2015.2419216
Subject(s) - engineered materials, dielectrics and plasmas , photonics and electrooptics
We investigate terahertz quantum cascade lasers with a dense array of active micropillars forming the gain medium. Depending on the size of these pillars relative to the emission wavelength different optical regimes are identified. For pillar dimensions on the order of the emission wavelength, a photonic crystal resonator is created. Single mode emission is observed at high symmetry points of the photonic band structure. The selection mechanism of the favored laser mode is studied by analyzing the gain enhancement effect for eigenmodes with a low group velocity and a large mode confinement of the electric field energy in the micropillars. Subwavelength micropillar arrays constitute a photonic metamaterial, which can be described using an effective medium approximation. Similar to a bulk laser ridge, the array forms a Fabry-Pérot resonator that is defined by the boundaries of the array. From the longitudinal mode spacing, we derive an effective group index of the pillar medium. Limitations in terms of minimum filling factors and waveguide losses for the realization of subwavelength micropillar and nanowire array terahertz quantum cascade lasers are investigated.