z-logo
open-access-imgOpen Access
Unsupervised Domain Adaptation With Dense-Based Compaction for Hyperspectral Imagery
Author(s) -
Chunyan Yu,
Caiyu Liu,
Haoyang Yu,
Meiping Song,
Chein-I Chang
Publication year - 2021
Publication title -
ieee journal of selected topics in applied earth observations and remote sensing
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.246
H-Index - 88
eISSN - 2151-1535
pISSN - 1939-1404
DOI - 10.1109/jstars.2021.3128932
Subject(s) - geoscience , signal processing and analysis , power, energy and industry applications
Enormously hard work of label obtaining leads to the lack of enough annotated samples in the hyperspectral imagery (HSI). The mentioned reality inferred the unsupervised classification performance barely satisfactorily. Unsupervised domain adaptation is exploited for knowledge delivery from a labeled source domain to boost the performance on an unlabeled target domain. In this article, we propose an unsupervised domain adaptation architecture with dense-based compaction (UDAD) for HSI classification (HSIC). The processes of spectral–spatial feature compaction, unsupervised domain adaptation, and classifier training are incorporated with an integrated framework to complete the HSI cross-scene classification. The core of the proposed framework is to utilize adversarial domain learning to reduce the domain discrepancy. To this end, the classifier trained in the source domain would accomplish well in the target domain for the unsupervised HSIC. Besides, to extract the discriminative spectral–spatial feature for the HSI domains, a dense-based compaction network is applied to complete the semisymmetric mapping. Our experiments illustrate that the UDAD model yields more effective classification performance than other state-of-the-art unsupervised HSIC methods.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here