Human Sensor Networks for Improved Modeling of Natural Disasters
Author(s) -
Oleg Aulov,
Milton Halem
Publication year - 2012
Publication title -
proceedings of the ieee
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.383
H-Index - 287
eISSN - 1558-2256
pISSN - 0018-9219
DOI - 10.1109/jproc.2012.2195629
Subject(s) - general topics for engineers , engineering profession , aerospace , bioengineering , components, circuits, devices and systems , computing and processing , engineered materials, dielectrics and plasmas , fields, waves and electromagnetics , geoscience , nuclear engineering , robotics and control systems , signal processing and analysis , transportation , power, energy and industry applications , communication, networking and broadcast technologies , photonics and electrooptics
In this paper, we present a novel approach that views social media (SM) data as a human sensor network. These data can serve as a low-cost augmentation to an observing system, which can be incorporated into geophysical models together with other scientific data such as satellite observations and sensor measurements. As a use case scenario, we analyze the Deepwater Horizon oil spill disaster. We gather SM data that mention sightings of oil from Flickr, geolocate them, and use them as boundary forcings in the General NOAA Oil Modeling Environment (GNOME) software for oil spill predictions. We show how SM data can be incorporated into the GNOME model to obtain improved estimates of the model parameters such as rates of oil spill, couplings between surface winds and ocean currents, diffusion coefficient, and other model parameters.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom