
Advanced Chromatic Dispersion Compensation in Optical Fiber FBMC-OQAM Systems
Author(s) -
Francois Rottenberg,
Trung-Hien Nguyen,
Simon-Pierre Gorza,
Francois Horlin,
Jerome Louveaux
Publication year - 2017
Publication title -
ieee photonics journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.725
H-Index - 73
eISSN - 1943-0655
pISSN - 1943-0647
DOI - 10.1109/jphot.2017.2773667
Subject(s) - engineered materials, dielectrics and plasmas , photonics and electrooptics
We report on several methods for the chromatic dispersion (CD) compensation in optical fiber offset-QAM-based filterbank multicarrier (FBMC-OQAM) systems. We show that several equalization structures, initially proposed for wireless FBMC-OQAM systems, can also be applied to optical FBMC-OQAM systems to enhance the CD tolerance. The different CD compensation algorithms are numerically validated and compared to the conventional one tap equalizer in a 30-Gbaud optical FBMC system, in terms of performance and complexity. Considering a 1-dB optical signal-to-noise ratio penalty at a bit error rate of 3.8 × 10-3 and 256 subcarriers, the results show that the maximum CD tolerance of the frequency spreading method can be enhanced by a factor 10 and 30 for 4-OQAM and 16-OQAM modulations, respectively, compared to that of the conventional one-tap equalizer, at the cost of higher complexity. Even though the other CD compensation methods provide a reduced CD tolerance compared to the frequency spreading method, they require less complexity and hence can be good alternatives.