
Analysis of Unidirectional Absorption in a Defective Superconducting Photonic Crystal
Author(s) -
Tsung-Wen Chang,
Chih-Hsi Huang,
Da Jun Hou,
Chien-Jang Wu,
De-Xin Chen
Publication year - 2017
Publication title -
ieee photonics journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.725
H-Index - 73
eISSN - 1943-0655
pISSN - 1943-0647
DOI - 10.1109/jphot.2017.2717832
Subject(s) - engineered materials, dielectrics and plasmas , photonics and electrooptics
Terahertz unidirectional resonant absorption in a finite one-dimensional defective superconducting photonic crystal is theoretically investigated. We consider an asymmetric photonic crystal (AB)ND(BA)M, where A is a dielectric, B is a superconductor, D is the dielectric defect, and N, Mare the stack numbers, respectively. At N ≠ M , it is found that the resonant absorption for the structure exhibits the unidirectional property. The unidirectional resonant absorption points increase as the difference between N and M increases. We also investigate the unidirectional property as a function of angle of incidence. The results show that the unidirectional absorption is nearly independent of the polarization at a given angle of incidence. The proposed structure can be used to design a polarization-independent optical device which may be technically used in superconducting photonics.